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The Standard Model = Two kinds of matter and three kinds of force known:

matter force (interaction)

lepton (v, e, ...) gravity + electro-weak
hadron (7, p, ...) gravity + electro-weak + strong

All the interactions are described by gauge theories.

QCD = Quantum Chromodynamics = gauge theory of strong interaction:
e perturbative calculations: Feynman diagrams,
e non-perturbative calculations: lattice,

both require computers, often exceeding TFLOPS.



Numerical lattice has brought QCD theoretical calculations to about 10% accuracy;,

e using 100 GFLOPS super computers.

Newer research projects were formed to bring us to 3-5% accuracy for calculations such as
e hadron mass spectrum,
e light quarks and chiral symmetry,
e hadron electroweak interactions,

e high-temperature QQCD phase structure.

We will soon need 1% accuracy to go beyond the standard model:

e 10 TFLOPS super computer will be used soon.



1 GAUGE THEORY

1 Gauge Theory

Gauge theories: modeled after Maxwell theory of electromagnetism:

E=—— H=-— - D = B =
V X 5 V X BT +7, V 0, Vv 0
e Vector potential A, = (¢, A): E=—-Vop— -, B=V x A.

oN -

e Gauge invariance: ¢ — ¢ — 5 A — A+ V), with arbitrary scalar A(z).

QED (Quantum Electrodynamics): quantum theory of electromagnetism

e quantum gauge field theory of photon (A,) and electron (1)

1 o
Lqrp = _ZFM F + ("D, —m)ip,

—ieF,, =D,,D,| =0,A, — 0,A,, D, =0, —1ieA,,

e accurate calculations using perturbative method of Tomonaga, Schwinger, Feynman and Dyson.



1 GAUGE THEORY

QCD (Quantum Chromodynamics): quantum theory of strong interaction

e quantum gauge field theory of gluon (Af) and quark ((¢")
1 .
Locp = —2T1"G“”G,W + q(iv" D, — m)q,
—igGuv - [Dua Du] - auAV - &,AM + [Am Au]a Du — 8# - igAu;
8 1
Au — Z AGTCL; [Taa Tb] - ifabcT07 Tr<TaTb) - é(sab-

2
d
e asymptotic freedom (infrared slavery): Bes(g) = ,udg = bog” +big° + O(g9") <0,
L
Z: 1 (1IN, 2N
b°<47r>2( 3 3f)’
b 1 [34N? 10N.Ny (N2 —1)Ny
U Tamr\ 3 3N, ’

perturbative: g — 0 as u — oo, works for above ~ 10 Gev/c reactions, but

non-perturbative: ¢ > 1 as u decreases below ~ 10 GeV /c, needs lattice formulation.



1 GAUGE THEORY

Quantum Gauge Field Theories

QCD QED
Quantum Theory of Strong Interaction — Quantum Theory of Electromagnetic Interaction

1 pv 7( 7 ~M 1 pv Iy(7~M
Locp = —2TrG G + q(iy"' D, — m)q, Lorp = —4F w + YYDy, — m),

Non-Linear Interaction Linear Interaction

0660066 02;}6‘6’6’6‘6’6\
S
S
Complicated Vacuum Simple Vacuum
Interaction changes: g = g(r)

r — o0 g(r) — oo, Confinement r — o0: e(r) — Finite electron charge e

r — 0: g(r) — 0, Asymptotic Freedom




2 PATH INTEGRAL

2 Path Integral

Quantum mechanics = probability amplitude (z|e™""!|y).

2

e Hamiltonian H =T +V = b + V(x):
2m

e Free particle (V = 0):

it/ (9m, 1 it m .m
[ dp(z|p)e "7 (ply) = /dp—exp(—Q—p +ip(r —y)) =\ 5P [@(w—y)ﬂ-



2 PATH INTEGRAL

e For interacting case in general, V' # 0, introduce a lattice in time by dividing the interval

t() = 0, t = €, lo = 26, PN IN_1 = (N — 1)6, t = NE,

and the amplitude is described by U, = e “(T+V) ag

(xle”""y) = (@|U N |y).



2 PATH INTEGRAL

e In the coordinate (x) basis
W. = 6—ieV/2€—i6T€—i6V/2
=

is more convenient, because

(@l Wily) = | 5 exp i (e = o)? = i5 V(@) + V(w)l}.

€

o W, and U, differ only infinitesimally: W, = U, + O(¢?), hence
W = exp(—it(T +V)).

lim W,
N—oo

e Insert N — 1 complete sets of position eigenstates,
(z]e” " y) = lim /dxl...de_1<:c|We|x1>...(a;N_1|W€\y>.
— 00

we obtain an expression for the amplitude

lim <m>N/2 / dxy...dxry_1exp {z;Z[(x —x1)* + .| —ie 1V(a:) + V(z1) + ]} :

N—oo \271€ 2



2 PATH INTEGRAL

e We abbreviate this “path integral” as
(z]e " y) = / Dze'™.
where for each “path” z(t) the “action” is given by
t
S= | dt'(T—V)

and the path integral measure is

Dx = lim ( m )N/2d331...d:1;N_1.

N—oo \27m1€

e Usually the action S is real, making

— the factor €™ to oscillate,

— the path integral hard to calculate.



2 PATH INTEGRAL

Fuclidean path integral:

e By choosing t = —i7 (7 > 0), we obtain a better-behaving expression
(xle™""|y) = [ Dwe™E,

with
S= [ dr'(Te+V),

which is the same as 1S if ¢ is substituted by i7.

e Again this is actually an abbreviation for

_ m\N/2 m 5 E
]\;Enoo (27T€> / dxy...drN_1exp {—26[(:1: —x1) +...] —¢€ [2\/(:1:) + V(z1) + ...

So far only the time coordinate is “latticized” (discretized).

In the following we shall “latticize” (discretize) all the space-time coordinates.



2 PATH INTEGRAL

Quantum field theory:

e The probability amplitude is given by
(i(x)e™""|s(x)) = [ Dlg

e Lor each field configuration ¢(x) is associated the “action”

Sigl = [ dt [ PxL(¢,00) = [ dt(T[¢] — V]g).

e Any relevant field correlation or observable is described like

<T¢/¢” Z/D ¢¢// iS[¢
with Z defined to make (1) = 1.

These are actually abbreviations for more complicated but accurate space-time discretized formulae
with D|[¢] meaning integral over ¢; defined on discretized space-time points .



2 PATH INTEGRAL

Euclidean quantum field theory: a better-behaving version with z2° = ¢t = —i7 = —iz*,

e The“action” for a field configuration ¢(x) is

Sl = [ dr [ dxLip(6,00) = || dr(Tsl¢] + V).

e Any observable is described as

(0) = Z | D[g]O[gle "1,
with Z defined to make (1) = 1.

These are actually abbreviations for more complicated but accurate space-time discretized formulae
with D|[¢] meaning integral over ¢; defined on discretized space-time points 7.



2 PATH INTEGRAL

Fermion fields (1): each fermion state requires a pair of Grassmann variables (£, &%),

e anticommute: {£",n} = {&,n} ={n"} =0,

e any function is a polynomial: F(¢+, &) = FO00 4 pOl¢ 4 pU0)et 4 pAlete,

o integral: [déde" F(€7,€) = — [detdeF(€,€) = U, eg,
[detdee™ S = [detde(1 — NeTE) = ),

o derivative: Oc+ = FU10 4+ FUU¢ and 0 = FOU — PODE 50 that
00+ F = FUY = —9..0cF = [ d¢dEt F,



2 PATH INTEGRAL

e generalizing,

[ déidgy déadey .. dEndENF(ET,€) = ()Y [ dé dgidgy dés...dEGdENF(E",€) = FOY),

eg
[ deydgidey dy...d¢fdEn exp(—EF Ayg) = det A,

and

[ dg déy .. dEyden exp(—€] A& + & mi + 0 &) = (det A) exp(€] Ajim),

further, taking derivatives of (0,,0,+) and setting n = n* =0,
J

/dffdfl---dfﬁdi exp(—&; Aji&)&S &y & &, = (det A)Gﬁff.ﬁ?A;;fil---A/‘Cn’in_la

jk: takes value 41 for even / odd permutations and 0 otherwise.

ky
where € i



2 PATH INTEGRAL

Fermion fields (2): coherent states are indispensable, defined as

€)= 161, &2, ) = exp( £ a1 €))

and

0l =1, and &) = &l[&),

describe completeness:

1= [detdee™s ) (g,

and matrix elements:

(&laj Ajia;|€) = ffAj¢§/€_§+€/,

or

<f‘ eXp(ajAjiai)‘§/> = eXP(ff(eA)jifz{)a

so that
Ir eXp(ajAﬂaz‘) = /df+d§ exp(—€ 7€) (+¢] eXp<ajAjiai)| — &)
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3 Lattice QCD

Simplify from 4d Minkowski continuum to 4d Euclid discrete space-time:

Easiest: 4d simple hyper-cubic lattice, LolqLoLs,

site: s = (ngninang), 0 <n; < L;—1(i=0,1,2,3).
link: [ = (s,u), p€{0,1,2,3}, connects s and s + fi.

constant separation (lattice constant) a between neighboring sites.

Taking a — 0 should give continuum physics.



3 LATTICE QCD

Dynamical variables:

quark: ¢(s), defined on site and forms basis of fundamental (3) representation of SU(3),

gluon: U(s, u) = exp(ig /SSHL A,(y)dy,) € SU(3), now a group element defined on link.

Gauge transformation: G(s) € SU(3), defined on site, maps quarks and gluons
q(s) — G(s)q(s)

and

Ul(s, p) — G(s)U(s, 1)G(s 4+ 1)~ "

There are many other ways to define lattice, eg:
e random lattice,

with different advantages, but the way ¢, U and G are defined is basically the same.



3 LATTICE QCD

Action: SqceplU, ¢, G] = Seuon|U] + Squark|U, ¢, G], must respect gauge invariance:

gluon part: Sgun[U] = 28:; O(s, p, V),

b

g*
1

e where the plaquette, O(s, u,v) =1 — 3ReTrU(s, W U(s+ ) U(s+ 0, 1) U(s,v) 71,

1
® gives —2TrG“”GW asa — 0and g — 0,

quark part: Sqan[U, ¢, 4] = X a(s)M[U](s, s')q(s),

e with M [U](s, s") describing quark propagation between sites s and s/,
e which should give ¢(iv"D, —m)q as a — 0 and g — 0,

e but there is a serious problem, which will be discussed later,

Gauge invariance is preserved.



3 LATTICE QCD

Expectation values of any gauge-invariant observable:
(0) = N [[dU][dglldglOIU. ¢, @) exp(—SacnlU, 4. ).
or by integrating over the quark Grassmann variables,
N7 [[aU](det M[U]) exp(—Sguon[U])
where (N or N’ is defined by (1) = 1).

Finite lattice and compact SU(3) assures finite (O).

Since
(det M[U]) exp(—Sgiuon|U]) = exp(—Sgiuon|U| + Trlog M[U]),

it 1s often convenient to use effective action

S[U] = Sguon|U] — Trlog M[U].



3 LATTICE QCD

Continuum limit is well defined because of the asymptotic freedom.
e Assume all the relevant quarks are massless.
e Then any observable with mass dimension must be described as
(O) =a"'f(g)
with some dimensionless function f(g) of dimensionless coupling g.

e Renormalizability of the theory means the cutoff dependence should vanish

d{0)
da

— 0

as a — 0, or
(9) = £1(9) (%7) = B0 (g) + £(g) —

e This (df /f = —dg/p) is easily solved to give:
dh
(O)a o exp ( /g )

(OYa o< (g%by) ™/ 0 exp(—1/(2b0g?))[1 + O(g%)],

or

d
where 3(g) = —ad—g — —byg® — big° + O(g") is perturbatively well known.
a



3 LATTICE QCD

In practice quarks are massive: so

e instead of solving

_a%_Fﬁ(g)a—g f(aag) - O(CL),
e work with 9 9 9
e+ 890 = A(gmig | fla.g.m) =0

at some prescribed kinematic condition,

e the coefficient (g) = cog® + O(g?) is perturbatively calculable again,

1 3(N?—1)
(472 N

Co —

e two independent solutions,

A = albog?) @ exp

» 1 1 b
~ [ dh (ﬁ(h)+boh3_b%>]’

and

M = m(2byg?) =0/ 2%) exp

)

["dn (;% . b(;(;z)

e because by, by and ¢ are independent of regularization scheme, M is also.

Thus we can work with fixed mass ratio.



3 LATTICE QCD 9

Chiral symmetry: invariance under global transformation

q+— e"Pq and qg+— qe*.

e preserved in the absence of mgq, like

U(Nf)L X U(Nf)RZSU<Nf)V X SU(Nf)A X U(l)v X U(l)A

e spontaneously broken for light normal quarks, m, ~ mg ~ 0, but is fairly good (SU(2)y x SU(2) 4)

important for Nambu-Goldstone pion, PCAC, etc,

e might be still good with strange quark, mgs ~ 100 MeV,

e but is hard to maintain on regular lattices.



3 LATTICE QCD

Naive (and free and massless ) lattice fermion action,

1 5
Mxy - éaD ! %:’Vu[éﬂﬁb,y - 593—%1/]7

leads to a propagator

A(p) = a(vy, sin(pua))_l,

which has 2P poles at p, = 0 or 7/a:
e for D = 4 there appear 2* = 16 flavors instead of 1,

e shifting of one component of p,, such as p, = p, — 7/a, acts like

VuSin(pua) = =y, sin(pua)

so the chirality 4= states are paired.



3 LATTICE QCD

Nielsen and Ninomiya proved that for a fermionic system with

e a regular lattice and

e local,

e hermitian,

e and translationally invariant action,

chirality 4 states are paired.



3 LATTICE QCD

Three traditional ways to alleviate this fermion doubling problem:
e move away from regular lattice, like random lattice approach,

e explicitly break the chiral symmetry, like Wilson approach,

Dr I p_

or by rescaling the fields,
My = dpy + K %:[(7” + ’Yu)Uxu(SHﬂ,y +(r — ’YM)UJM(S%—Q,?JL

with “hopping parameter” K = 1/2(ma + Dr).

— propagation from a site x to x £ 1 projects chirality:
(1 + w)2 _ (1 iw)
2 L2 )

a{%[% sinp,a + (1 — COSpua)]}_l

— propagator becomes

giving a mass m + 2dr/a to the doublers.
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e dilute the doubling and keep part of the chiral symmetry, like Kogut-Susskind (staggered) approach

— Assume even sites in all the lattice directions, L, = 2K,
— single-component Grassmann site variable x,, (x, =0,1,..., L, — 1),
— action Skg = XMy X, With propagation matrix

1
D D—
Mxy = a m5my — éa ! %:Uxu[(swﬂ,wa o 5$—ﬂ,yiju]

— phase factor 7, satisfies ng = —1

)

— to form a spinor, use a 2" hypercube,
T, = 2u, + v,

with v, =0,1,..., K, — 1 and v, =0, 1,

— 2P =16 components in each hypercube are combined to form Dirac spinors of 4 flavors,



3 LATTICE QCD

— define I', = 71"75° 5%, and

Sf = Z I fXQu—H) and qu —

1
4Trr+r — Sy and — z(r+)8f< )19 = %8679 lead to

X2u+v = QTI(F:JFQU) and X2utv = QTI“(LIUFU),

— with 3> = 3’3", the mass term becomes
e v

;XxXx — 16%/(QU17 X 1tQu)

where 1., acts on Dirac indices s and 1; acts on flavor indices f,



3 LATTICE QCD

— relations like

’YHFU = 50,%77va+[£ + 51,vﬂnva_ﬂ, and 751—‘”75 — (_1>v1+02+v3+v41—wv’

and difference operators for ad, f,, and for a282 fu

Aufu=usi = Fug)  and Gufu= ((urit fagi— 2

are used to obtain the kinetic term

16%:/%:QU[<’YM X 11)A, — (75 X t5t,)0,]qu

with flavor matrices given by ¢, = ’yg =1,



3 LATTICE QCD

— O(a) part (7, x 1;)A, gives back ordinary Dirac fermions with U(4) x U(4) flavor symmetry,
— while O(a?) part, (v5 X t5t,)d,, a lattice artifact, breaks the symmetry,

— yet a continuous subgroup U(1), x U(1),

qu— (U.P.+U,P,)q, and G, — q(PUS + PU.)

survives, with even- and odd-site projections defined by

1 1
Pe:§<17><1t—|-’)/5><t5> and P0:§<1'y><1t_75><t5>7

— mass term (1, x 1; further breaks the symmetry down to diagonal U(1), = U(1),,



3 LATTICE QCD

— propagator:
a

S[(ye x 1) sinkya + (75 X ts5t,)(1 — cos kya)]’

— physical momentum is p, = k,/2, and with

7T<lc <7T <p, <
a = a 2a pM_Qa’

the propagator has only one pole near p = 0 for a — 0 as the 5 x t5¢, part drops out,
— at finite a we have a continuous symmetry that allows studying Nambu-Goldstone pion,

— in continuum limit @ — 0 the full U(4) x U(4) symmetry should be restored.



3 LATTICE QCD

Domain-wall fermions: promising new method by Kaplan, .. Shamir, .
e use Hd lattice, (. s), with the breaking exponentially suppressed in the 5th dimension.
e Dirac operator D° = 7,0, + 7505 + m(s) with standard Dirac matrices and

— m(s): monotonously increasing from m(—oc) = m_ to m(0) = 0 to m(+o0) =m™,

e has a zero-mode solution Dy = 0:

— by = P ug,

— chiral eigen mode Vsu4+ = Fu,

e localized to the m(0) = 0 defect (£0s + m(s))p+ = 0, ie P+ x exp(F /S m(s')ds’).

Needs wall-anti-wall in a finite periodic lattice, yet works well for QCD.
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Hadron spectroscopy
e Quark propagator Q(s, s'): inverse of the propagation matrix, M[U]"!(s, s').
e Hadron propagator H (s, s'): color-singlet combination of quark propagators.
e Hadron mass:

— pole, in the real Minkowski world,

— decay constant in time in the Euclidean world,
H(s,s") o< X ¢, exp(—FEpnt) ~exp(—mt)  for large t = |sy — s{|.

— t is finite (not co) on the lattice:

— instead look at effective mass
meg(t) = —In(H(t+1)/H(t))
— meg(t) should show a plateau (— m as t — 00).

e Don't forget to project onto fixed momentum, usually 0.

e Structure and decay parameters are calculable with appropriate insertions of current operators in th
plateau.



3 LATTICE QCD

Light hadron spectrum is well within reach:

0.40 ————
0.35 [— —
0.30[— X —

i 0.25

0.20 [ Elg

1 T R B | T S S
10 20 30

Need:

L7
16F
15F
14}
13F
12}

1L

0.00 0.25 0.50 0.75 1.00

e full-QCD with light-quark mass and its chiral symmetry controlled by DWF,

e hadron matrix elements (Belle, BaBar, KTeV, etc),
e nucleon structure (RHIC Spin, SuperK; etc),

e quark mass .

o oy (My) = 0.117 % 0.003,

e thermodynamics (RHIC, LHC, etc),




3 LATTICE QCD

Hadronic matrix elements:
o K physics (AGS, KTeV): explain

— AI=1/2 rule, A(K — 7n(I = 0))/A(K — 7r(I = 2)) ~22, through

VadVi(Gr/V2)[CH ()0 (1) + C ()0~ ()], OF = [(8d) (), + (5u)p(ud);] — [u < d,

where O~ is AI=1/2 and O™" is mixed with 3/2,
— € [e=28(4) x 107*, where ny=e+¢€', qy=e-2¢, n=A(K} — nr)/A(Kg — 7r), through

By = 3(K"|(3d)7|K°) /8(K"|(5d) 4|0)(0](3d) | K°), etc.
e B physics (Belle, BaBar): similar to K.
e Nucleon (spin) structure (..., HERMES, RHIC-Spin, LHC, ...).

e Nucleon decay (Kamiokande, SuperK; ...).

Correct treatise of quark mass and chiral symmetry is crucial: DWE'
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QCD Thermodynamics: phase transition or cross-over is expected at T ~ 200MeV
e from confined to deconfined, or

e from chiral-broken to chiral-symmetric

Look at canonical partition at temperature T°
Z =trexp(—H/T)
which can be described by a lattice path integral
trexp(—H/T) / D¢

with
T) = [T dt [ dzLp(e,00)

and periodic [anti-periodic] boundary condition in time is imposed on bosonic [fermionic] fields.



3 LATTICE QCD

Order parameters:

e for chiral symmetry (m, ~ 0), chiral condensate

X = (qq),
calculable as o< trM !

— in spontaneously broken phase x # 0 and m?2f? = m,x

— in symmetric phase x = 0.

e for confinement (m, ~ 0o), Polyakov line

N—1 .
P={Tr I Uz, t;u=1))
t=0
which measures the free energy of a heavy color charge e /T = (ce™H/Tct) = (¢(1/T)ct(0)) :
— confined: F' — oo and P =0,

— deconfined: P # 0

Related to center (Z3) symmetry: P +— wP, w® = 1.

Other thermodynamic quantities are calculated too.
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Exotica: N.#£3, Ny#2+1, ...
e 7' # 0 QCD phase structure is easier to understand if SU(N.) quenched is second order for N, > 4
T, 3
e Hagedorn temperature, =

?
Vo A\md—2)

e New developments in M /string theory starting from Maldacena’s duality conjecture.

— Glueball spectrum at large N, and large g* can be obtained.
— Ratio between different string tensions can be obtained,

* classified by Z(N,.) N.-ality and string tension:
* naive SU(N,) strong coupling, o, o« min{k, N — k}

* Strassler SU(V,) strong coupling, oy o< k(N — k)

k
* Strassler super-SU(N,.) strong coupling, o o sin ﬁﬂ

— N, =4 is the first example with different string tensions,

x 3-3* and 6-6* tensions are the same in SU(3) pure-gauge theory.
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4 Computational Method
In practice, there are too many degrees of freedom for analytic computation:

e modest 10* lattice means 4 x 10* link variables,

e or 32 x 10" real degrees of freedom for gauge field alone,

e cven when restricted to U,, = &1, the path integral is a sum over 240000 1012900 configurations
usually impossible to perform analytically.
Lattice QCD action Sqepl|U, g, g, is real
e “Boltzman factor” exp(—Sqcp|U, ¢, q]) is positive definite,
e Monte Carlo technique is useful.
S(C):

Numerically generate configurations {C'} with probability distribution o< e”
e Metropolis,
e (pseudo) heatbath,
e Langevin,
e molecular dynamics,

e hybrid Monte Carlo...



4 COMPUTATIONAL METHOD 3

Use Markov chain C' — C specified by a probability distribution P(C, C")

e to achieve equilibrium:

e 59 =3y p(C, C’)e_S(C/)
O/
is the necessary and sufficient condition:

e distance between two ensembles F and E’ of configurations:
|2~ B = SIpl0) - H(O)
p(C) and p'(C) are probability distributions forE and E’ respectively,

e suppose F' resulted from the Markov chain starting from E:

P(C) =2 P(C,C)p(C)
e since P(C,C") > 0and > P(C,C") =1,
O/

|B' = Euall = 15 PIC,CYRIC) = poa €] £ X, PC,CNPC) = pia(C)] = ||E = Bug|

or the algorithm reduces the distance,
o if P(C,C") > 0 then the inequality is exact,
e casy way to implement: the detailed balance

P(C',C)e 5O = p(C, C"e 5.



4 COMPUTATIONAL METHOD 3

Metropolis:

1. choose arbitrary candidate U’ to replace a link U that satisfies P(U,U’) = P(U’,U)
eg U' = UV with some p(V), p(V) = p(V~1), (peaked at p(1)),

2. evaluate S(U’),
3. if S(U') < S(U), accept U,
4. otherwise, accept U" with a probability of exp(—AS):
e generate a uniform random number 0 < z < 1 and accept if x < exp(—AS)

5. fail safe, but efficiency depends on p(V).

(Pseudo) Heatbath:
e given the environment, solve for p(U’) o e,
e casy for Ising, like p(+) = e /(e75(H) 4 ¢=5(2)),
e practical for SU(2) QCD (see Creutz),
e not so for SU(3) QCD: use pseudo heatbath (use combination of SU(2) subgroups to cover SU(3).)

Over relaxation

e used to accelerate decorrelation for the above two,

e choose V' to minimize S(UV) and try U' = UV?.



4 COMPUTATIONAL METHOD 4

Langevin

e Brownian motion in hypothetical time 7,

d_:z? — —§+n or discretized x’:x_€§+\/gn:x—f7(a:,n)
dr ox ox

e random noise 7 must be appropriately regularized, eg, by a measure like o< exp(—n?/4) and satisfie
(n(r)) =0 and  (n(7)n(7)) = 20(7 — 7'),

e probability distribution P(x, 7) evolves according to P'(x') = </ Dz P(z)(z" — x + fr(z,n))).
or to the first order

AP

0 (0P(x) N 0.5
N 6851: ox ox

which can be transformed into a Fokker-Planck equation

p@:)) +0(&)

0
— 5 1P(7)) = Hyp| P(7))
where the positive semi-definite Fokker-Planck Hamiltonian has a zero-energy ground state
HFP|6_S(QC)> =0
and usually finite energy gap, ie quick (exponential) convergence to exp(—.S),

e conceptually simple but involves O(e) error.



4 COMPUTATIONAL METHOD

Molecular dynamics (MD)

e follow a classical motion governed by a fictitious Hamiltonian

1
5192 +S(z)

e and appropriately (randomly) refresh momenta p to give o< exp(—.S) distribution
e more efficient than Langevin (not a diffusion process)

e slightly more accurate also (usually O(€?) error).

Hybrid Monte Carlo (HMC)
e follow a classical path, like in MD,
e accept or reject by a Metropolis test
e no discretization error in €

e applicability is limited.
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Gauge part is easy, with local estimation of

O=TrUUUU.

Quark part must be integrated over Grassmann variables:
(O) = N! [[dU]O[U](det M[U]) exp(—Sguon[U])

leading to effective action,

S = Syuen|U] — Trln M[U].

Irrespective of L, MD or HMC, requires estimating

5TrlnM[U] = Tr (M[U]

oU

o 1(5M[U])7

often using noisy estimator and iterative methods: (bi)Conjugate Gradient (bCG), Conjugate Residua
(CR), ...



4 COMPUTATIONAL METHOD

In practice, L; >~ 64:
o 4 x 64* = 2?6 = 64 million U'’s, each with 8 real degree’s of freedom

e 512 M-dimensional integration, may require 2* more.

Needs a lot of UxU and U xq operations, eg, in a single update of a link are
gluon part: several 10° FLOP’s, many (U xU), to estimate plaquette TrtUUUU,
quark part: several 10° FLOP’s, many (U xq) in CG-solving M[Ulq = &, to estimate TrIn M[U].

Repeat a million times: ~ 64 x (million)* ~ 10 FLOP’s,
e takes months on O(10) GFLOPS computer.

Needs better technology: parallel computing

e local interaction matches parallel computing.
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5 QCD-dedicated Parallel Super-Computing

Requires a huge number of numerical calculations:

e 20 years ago: ~ MFLOPS on VAX’en or CDC’s,
e 10 years ago: ~ GFLOPS using Columbia, APE, GF11, QCDPAX, CM2, etc,
e today: ~ TFLOPS using CP-PACS or QCDSP.

L ]
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1.55— xi‘o —f
14 —
13 —

12 —

:IIII|IIII|IIII|IIII|III: .
14.00 0.25 0.50 0.75 1.00 unprmtable ﬁgure

With about 10'®~1” floating-point operations a vear,
e partial success in hadron mass spectrum (7, p, N, ...)
— albeit with quenched approximation
e partial success in describing “deconfining/chiral” phase transition at about 10* K

)

— investigated at RHIC and LHC experiments,
— albeit with relatively heavy quarks.
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Necessary to improve on
e systematic errors arising from finite lattice spacing a,
e systematic errors arising from finite lattice volume La,
e chiral symmetry;,
e light-quark dynamics,

e understanding of hadronic electroweak interactions.

Requires TFLOPS supercomputers: RIKEN-BNL-Columbia QCD Project

QCDSP = QCD with DSP:
e a parallel super-computing project for QCD,

e made possible by passion and labor of many physicists.

DSP = Digital Signal Processor: inexpensive, but powerful.
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QCDSP
e RIKEN-BNL Research Center: 600-GFLOPS,

— one 150-GFLOPS,

— four 100-GFLOPS.,

— one H0-GFLOPS partitions,

— and some single-mother-board machines,

— flexibly reconfigured for physics projects,

e Columbia University: 400-GFLOPS,
e Smaller configurations in SCRI (FSU), Ohio, Wuppertal (Germany).

CP-PACS Project of University of Tsukuba: 600-GFLOPS.



5 QCD-DEDICATED PARALLEL SUPER-COMPUTING 4

QCDSP at RIKEN-BNL Research Center
e 192 mother boards,
e one mother board = 64 daughter boards,
e one daughter board = 50-MFLOPS DSP + custom NGA + 2-MB memory;,
e with single-precision arithmetic,

12K daughter boards form a uniform torus network with 4d nearest neighbor communications.

Design started in '93:

e Columbia University: Norman H. Christ, Robert D. Mawhinney, Pavlos Vranas, Dong Chen, Roy
Luo, Chulwoo Jung, Adrian Kaehler, Catalin Malreanu, ChengZhong Sui, Alan Gara, John Parson
(Nevis Labs),

e SCRI at Florida State University: Tony Kennedy, Robert Edwards,
e Trinity College, Dublin: Jim Sexton,
e Fermilab: Sten Hanson,

e Ohio State University: Greg Kilcup
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Construction:
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parallel computer is
e usable even before completion,
e so flexible,

— as capable of 5d domain-wall fermion lattice calculations, not planned in the design stage,

— as capable of Boltzmann Navier-Stokes, and other partial differential equation problems (nearest
neighbor communication).
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6 Research using QCDSP

Numerical lattice has brought QCD theoretical calculations to about 10% accuracy.

RIKEN-BNL-Columbia QCD Project was formed to bring us to 3-5% accuracy
e using bd DWF method with correct chiral symmetry, and
e TFLOPS super computers,
for calculations such as
e hadron mass spectrum,
e light quarks and chiral symmetry;,
e hadron electroweak interactions,

e high-temperature QCD phase structure.

Conventional 4d lattice calculations are kept alive too:

e in order to see all the different methods agree with each other.

We will soon need 1% accuracy to go beyond the standard model:

e 10 TFLOPS supercomputer will be used soon.
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Hadron matrix elements: Blum +
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e Good chiral behavior observed in three-point functions for By, € /e and K K mixing calculated from
the first 11 configurations from QCDSP.

contributed a lot too.
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Quark mass: Lattice and sum-rule estimates do not agree,
e Lattice results are lighter by almost a factor of 2,
e After seeing that, sum-ruler has been busy revising their results:

— especially with spectral function at medium energies,

— and may be converging with the lattice results.

Lattice results are not perfect yet: (partially) quenched, Nielsen-Ninomiya.

T T T T ‘ T T T T ‘ T T T T ‘ T T T |

140 | -

B & i

~ I .
E 120 - ]
Ay i @ ]
Uj‘ |- ]
100 - ¢ -
‘5 i % d % 1
s [ X - ]
5 % ]
Z 8ol % -
g C ]
60 ODW xKS oW oOSW -

C 1 | | | ‘ | | | | ‘ | | | | ‘ | | | [

0 0.05 0.1 0.15 0.2

a (fm)

DWFEF helps: Blum & Wingate 4+ Soni,
e Lattice perturbation developed for DWF 1-loop Z,,,
e Tentative quenched result: m (2GeV, MS) ~ 82 + 15MeV.
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Ny-dependence, staggered (ie with chiral symmetry):
e 2nd-order? for Ny =2 and m, = 0 with O(4) or O(2) exponents?
— looks at susceptibility of y
e Ist-order for Ny > 3 and m,; — 0

— well established for Ny > 4,
— not so for Ny = 3.

Ny =2+1, staggered (ie realistic case ):

the same unprintable figure

Need further investigation with larger V and finer T
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Pure-gauge SU(4) study: exploration of (N, Nf) plane - Wingate 4+ SO
e N;=4 and N,=3 is confining but chirally-symmetric at 7" = 0 (parity doublet hadrons),
e Interesting M/string theory predictions for wider (N, Ny) regions,
e Very weakly Ist-order N.=3 quenched deconfinement transition is hard to understand,

e 1st example with different string tensions (4 and 6).

Polyakov loop correlation
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e T # 0: phase change is not stronger than weakly first-order SU(3).

e String tensions, at L; = 6, signals for different 4 and 6:

— 04 ~ 0.068(3) and 05 ~ 0.11(2) or 1 < g4/04 < 2,

— T./\Jou (T =0) <T./\Joo(T ~T,) ~0.64(1) < /3/7(d — 2), common with N.=2 and 3.

e [urther investigation using QCDSP on larger and finer lattices and with general (N, Ny) is being

d
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Numerical lattice has brought QCD theoretical calculations to about 10% accuracy;,
e using 100 GFLOPS super computers.
Newer research projects were formed to bring us to 3-5% accuracy for calculations such as

e hadron mass spectrum,
e light quarks and chiral symmetry;,
e hadron electroweak interactions,

e high-temperature QQCD phase structure.
We will soon need 1% accuracy to go beyond the standard model:

e 10 TFLOPS super computer will be used soon.
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