STAR detector upgrades
in relation to
RHIC SPIN program

Bernd Surrow
MIT
Main Assumptions:

- The RHIC Spin Collaboration will write a report which:
 - Describes the full spin program,
 - provides context of beam and physics achievements and
 - lists needs for future detection capabilities and instrumentation.

- The 5 and 10 week scenario's will enter the document:
 - Near the end to indicate their impact,
 - i.e. not at as early constraints on the spin program!
Requirements on the STAR detector upgrade

- **Particle identification** (-1<|\(\eta\)|<1): Full acceptance TOF barrel system to extend particle identification capabilities

- **High rate TPC front-end electronics (FEE) readout and DAQ upgrade**: Allow for maximal utilization of high luminosity RHIC operation (AuAu/pp)

- **Inner tracker** (-1<|\(\eta\)|<1): Enhanced inner, high-rate tracking capabilities for heavy quark identification (charm/beauty) at mid-rapidity based on a precision micro-vertex detector

- **Endcap tracker** (1<|\(\eta\)|<2): Improved forward, high-rate tracking capability to enable reliable charge sign discrimination for W boson decays

- **Forward calorimetry upgrade** (2<|\(\eta\)|<4): Enhanced capabilities to measure forward produced mesons
STAR upgrade program

Overview

- Full Barrel Time-of-Flight system
- DAQ and TPC-FEE upgrade
- Forward Meson Detector
- Forward triple-GEM EEMC tracker
- Forward silicon tracker
- APS pixel detector
- Barrel silicon tracker
- Integrated Tracking Upgrade
Forward Meson Spectrometer
Conceptual Design

Physics Motivations:

• probe gluon saturation in p(d)+A collisions via…
 ➢ large rapidity particle production \((\pi^0, \eta, \omega, \eta', \gamma, K^0, \ldots)\) detected through all \(\gamma\) decays.
 ➢ forward di-jet surrogates \((\pi^0-\pi^0)\) probes gluons with smallest Bjorken-\(x\) in Au nucleus
 ➢ di-jets with large rapidity interval (Mueller-Navelet jets)

• disentangling dynamical origins of large \(x_F\) analyzing power in \(p\uparrow+p\) collisions.
• longitudinal spin asymmetries for \(\pi^0-\pi^0\) and \(\gamma-\pi^0\) rapidity correlations

FMS is a 2m×2m EM calorimeter built from existing lead-glass cells to replace the FPD west of STAR.
• built from existing lead glass cells from IHEP, Protvino and FNAL

• $0.8M proposal by Penn State University to FY05 NSF-MRI solicitation for high voltage, readout electronics and mechanical realization in January, 2005.

• planned implementation in STAR by October, 2006
Physics, status and timeline

- The study of heavy flavors and W production: Upgrade of the STAR inner/forward tracking system
- Simulation work and design of detector layout based on silicon and triple-GEM technology (On-going R&D and prototyping effort) started
- Integrated tracking design of a new inner and forward STAR tracking system mandatory
- Staging of tracking upgrade in accordance with readiness of detector technology and beam development:

Possible scenario:
- Stage 1: Installation of STAR Micro-Vertex Detector together with a minimal new barrel tracking detector based on silicon technology (-1 < \(\eta \) < 1) (Heavy Flavor Physics)
 - Proposal APS Heavy Flavor Tracker early CY05
 - Proposal Barrel after FY05 run
 - Installation of new inner tracking system by summer 2008 (FY09 run)
- Stage 2: Upgrade of the forward tracking system (1 < \(\eta \) < 2) (W physics)
 - Proposal after FY06 run
 - Installation of forward system by summer 2009 (FY10 run)

- Dedicated time for machine development with polarized protons to achieve high luminosity and high polarization is vital for the success of this novel program!
STAR tracking upgrade: Conceptual layout

- Solidworks design

- Forward silicon tracker
- APS pixel detector
- Barrel silicon tracker
- Triple-GEM tracker
Comments on STAR tracking upgrade

- STAR tracking upgrade in RHIC SPIN document:
 - Not yet a full DOE proposal!
 - Plans and work in progress!

- Relation to other DOE proposals:
 - ToF
 - APS Heavy Flavor Tracker
 - DAQ upgrade

- Communication to DOE Nuclear Physics:

- Funding profile and sources:
STAR tracking upgrade - Heavy flavor production

STAR RHIC-SPIN program

- Comprehensive study of the spin structure and dynamics of the proton, in particular the nature of the proton sea, using polarized protons: "RHIC SPIN Baseline program" (DOE review, June 2004)
 - Gluon contribution to the proton spin using various probes involving:
 - Final-state jets such as inclusive jet production and di-jet production (Short-term)
 - Inclusive π^0 production (Short-term)
 - Prompt photon production (Long-term)
 - Heavy-Flavor production (Long-term)
 - Flavor decomposition of quark and anti-quark polarization in W production (Long-term)

Heavy flavor production

- Unique test of partonic a_{LL}
- Sensitive to gluon helicity with low background from quark helicities
- NLO formalism available (Bojak and Stratmann)

$$A_{LL} = \frac{(\sigma_{++} + \sigma_{--}) - (\sigma_{+-} + \sigma_{-+})}{(\sigma_{++} + \sigma_{--}) + (\sigma_{+-} + \sigma_{-+})}$$
STAR tracking upgrade - W production

- **Flavor decomposition of quark and anti-quark polarization**
 - Semi-inclusive DIS - sensitivity reduced by fragmentation functions and e_q^2 weighting

- **W± production in pp collisions forms the best means to probe the flavor structure of the proton sea**

 \[\Delta d + \bar{u} \rightarrow W^- \]
 \[\Delta \bar{u} + d \rightarrow W^- \]
 \[\Delta \bar{d} + u \rightarrow W^+ \]
 \[\Delta u + \bar{d} \rightarrow W^+ \]

- **Parity violating single-spin asymmetries at RHIC provide access to the quark flavor structure of the proton spin:**

 \[A_{L}^{PV(W^+)}(\bar{p}p) \rightarrow \Delta u/u \]
 \[A_{L}^{PV(W^-)}(p\bar{p}) \rightarrow \Delta \bar{d}/\bar{d} \]

 \[A_{L}^{PV} = \frac{\sigma_+ - \sigma_-}{\sigma_+ + \sigma_-} \]

 \[A_{L}^{PV(W^+)}(\bar{p}p) \rightarrow \Delta u/u \]
 \[A_{L}^{PV(W^-)}(p\bar{p}) \rightarrow \Delta \bar{d}/\bar{d} \]
STAR tracking upgrade - Forward tracking

- Simulated forward p_T resolution ($1 < \eta < 2$)
- Forward p_T reconstruction: π^-
 - True $p_T = 30$ GeV
 - Range in η: $1 < \eta < 2$

- Reconstructed p_T for various detector configurations:

- Simulated fast tracking configuration:
 - Inner (fast) configuration: 3 silicon layers
 - Outer (fast) configuration: 2 triple GEM layers

N. Smirnov (Yale)

Integrated tracking approach of pixel upgrade and inner silicon upgrade in combination with forward GEM tracker!
Goal of STAR tracking upgrade working group:

- Work out the case for a proposal towards an upgrade of the STAR inner (-1<\(\eta\)<1) and forward (1<\(\eta\)<2) tracking system which is required for the study of heavy flavor (AuAu/pp) and W production (pp)
 - W physics case: Flavor decomposition of quark/anti-quark polarization
 - Heavy flavor spin case (Strong dependence of partonic asymmetry on heavy quark mass- study of heavy flavor tagged jets): STAR Heavy flavor program driven by STAR's relativistic heavy-ion program
 - Integrated tracking design of a new inner and forward STAR tracking system is mandatory
 - Staging of tracking upgrade in accordance with readiness of detector technology and beam development

- Set-up of simulation tools, physics simulation studies and R&D work on triple-GEM technology has been started

- Participation so far from: ANL, BNL, IUCF, LBL, MIT, Yale, Zagreb,...
 - Graduate students/Postdocs: 3
 - Staff physicists/faculty: 15
 - Engineers/technicians: 2

- Convenors: Ernst Sichtermann (LBL) and B.S. (MIT)

- Steering committee: G. v. Nieuwenhuizen (MIT), N. Smirnov (Yale), S. Vigdor (IUCF), H. Wieman (LBL)
Remarks on the physics case (1)

- AuAu heavy-flavor physics drives the STAR inner tracking upgrade
 - Pixel detector proposal which requires a new pointing device (STAR SVT review)
 - Potential heavy flavor spin physics case (gluon polarization) in polarized pp collisions
 - Requirements:
 - Secondary vertex reconstruction capabilities for central region (-1 < \(\eta \) < 1) in combination with the APS Heavy Flavor Tracker
 - Intrinsically fast detector / readout system
 - To be defined: Number of silicon barrel layers at what radius? Resolution? Readout speed? Occupancy?
Remarks on the physics case (2)

- Study of flavor decomposition drives an upgrade of the STAR forward tracking system
 - Endcap calorimeter in combination with a new proposal towards a forward tracking system
 - Complication in STAR with TPC: Tracking/Charge discrimination for high energy leptons break down in the forward direction
 - Welcome ideas for use in Heavy Ion running,
 - Requirements:
 - e^-/e^+ charge sign discrimination in forward direction ($1 < \eta < 2$) (Sagitta \sim2.5mm for high p_T \sim30GeV tracks)
 - Intrinsically fast detector / readout system
 - To be defined: Number of silicon disks and location? Resolution? Impact of dead material in front of EEMC

- For both upgrades: Integrated mechanical design: **Integrated Tracking Upgrade**
General considerations

- Start from the beginning with an integrated tracking design approach which is based on:
 - Integrated mechanical design for the APS Heavy Flavor Tracker, barrel layers and forward disks
 - Design which is reflected by many silicon based inner tracking systems at collider detectors such as: CDF/DO (Tevatron), ZEUS/H1 (HERA) and ATLAS/CMS (LHC)
 - First setup: APS Heavy Flavor Tracker and minimal barrel system
 - Flexibility to upgrade inner-forward system and inner-barrel system at a later stage
 - Assumption: TPC stays as such, FTPC is phased out and DAQ/FEE upgrade is completed

- Rely as much as possible on existing well established technology:
 - Detector technology (Conservative choice: Conventional silicon strip and triple-GEM technology)
 - Readout systems (APV25-S1)

- Report towards a full proposal to document the conceptual layout of an integrated tracker for STAR under preparation:
 - Physics motivation
 - Conceptual layout and technical realization
 - Timeline and Manpower
 - Infrastructure
 - Cost estimate

- Profit from potential resources at existing STAR institutions in terms of man-power and infra-structure
STAR tracking upgrade: Simulation status

- **Overall status of simulation**

 - **Fast simulation**
 - PYTHIA input
 - Poor man’s “geant”
 - Study detector number, placement, resolution, etc.

 - **Develop basic track reconstruction tools:**
 - “standard” helix fit
 - First application of standard helix fit to W decay electrons
 - Full simulations (W+background)
 - Heavy flavor

 - **Import design in GSTAR, ITTF:**
 - Full GEANT3 model (barrel/forward disks)
 - Strip simulator
 - Detector geometry in ITTF (New STAR track reconstruction)
 - ITTF tracking in barrel region (Au-Au simulations)
 - GEM tracker in GSTAR
 - Forward ITTF tracking
STAR tracking upgrade: Simulation status

- Fast simulator setup (Y-Z view)
Status of triple GEM R&D effort

- Design of at least three triple-GEM chambers to be installed and tested at STAR under beam conditions:
 - Profit from experience by COMPASS with triple-GEM technology (fast, precise)
 - Establish collaboration to a US company to develop and manufacture GEM foils
 - Manufacture 2D-readout structures
 - Design of readout system using existing chip: APV25-S1

- R&D team:
 - Collaboration between STAR/PHENIX: ANL, BNL, MIT, Yale

- Tech-Etch Inc. (Plymouth, MA):
 - TechEtch is capable of producing GEM foils
 - First results are encouraging in terms of overall gain values achieved
 - SBIR proposal to DOE from TechEtch in collaboration with R&D team: Submitted December 10, 2004

APV25-S1 chip
STAR tracking upgrade: R&D status

- Triple-GEM prototype chamber

- 2D-readoutboard: Under preparation at Compunetics Inc.
- Hybrid: Available
- DAQ system: Under preparation
- Chamber mechanics: Under preparation
Cost estimate for STAR Barrel and Endcap Trackers

- Preliminary cost breakdown (Stage 1: barrel / Stage 2: endcap tracker)

<table>
<thead>
<tr>
<th>Item</th>
<th>Design A</th>
<th>Design B</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensors</td>
<td>675</td>
<td>675</td>
<td>$1000/sensor</td>
</tr>
<tr>
<td>Sensor R&D</td>
<td>100</td>
<td>25k times 2 types</td>
<td></td>
</tr>
<tr>
<td>Hybrids</td>
<td>200</td>
<td>464</td>
<td>$500/beryllia substrate thin film</td>
</tr>
<tr>
<td>Hybrid R&D</td>
<td>50</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>APV25 chips</td>
<td>3870</td>
<td>85</td>
<td>$25/chip</td>
</tr>
<tr>
<td>Cables</td>
<td>290</td>
<td>282</td>
<td>$500/low mass cable</td>
</tr>
<tr>
<td>Cable R&D</td>
<td>50</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>FEE</td>
<td>421800</td>
<td>450</td>
<td>$1/channel, in house R&D</td>
</tr>
<tr>
<td>Integration FEE/DAQ</td>
<td>100</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>Power Supply</td>
<td>100</td>
<td>100</td>
<td>Power and bias supplies</td>
</tr>
<tr>
<td>Cooling</td>
<td>200</td>
<td>200</td>
<td>Under-pressure water cooling</td>
</tr>
<tr>
<td>Mechanics</td>
<td>1000</td>
<td>1000</td>
<td>Low mass, in house R&D</td>
</tr>
<tr>
<td>Misc. items</td>
<td>100</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>3874</td>
<td>3830</td>
<td>No contingency and overhead</td>
</tr>
</tbody>
</table>